Homework 1

Due August 30th on paper at the beginning of class. Justify your answers. Please let me know if you have a question or find a mistake. The book is https://archive.org/details/ complex-variables-2ed-dover-1999-fisher/page/n23/mode/2up. There are some hints on the next page.

- Nonbook problem: Solve for $\operatorname{Re} z$ and $\operatorname{Im} z$ in the system $z=\operatorname{Re} z+i \operatorname{Im} z, \bar{z}=\operatorname{Re} z-i \operatorname{Im} z$ to derive formulas for $\operatorname{Re} z$ and $\operatorname{Im} z$ in terms of z and \bar{z}.
- From Section 1.1 (page 9), numbers 1(e), 2(b), 4, 5(g), 6(b), and 15.
- From Section 1.2 (page 21), numbers 15 (for this one, also draw a sketch of the circle in the complex plane), 24 (for this one, write all solutions in the form $z=a+b i$ with a and b real), and 30 .

Hints:

- For 1.1.15, use the nonbook problem at the beginning of the homework to show that $|z-w|^{2}=$ $|z|^{2}-2 \operatorname{Re}(z \bar{w})+|w|^{2}$ and use the definition of equilateral triangle. Note that there is an outline of a solution on page 397 but you should be sure to fill in all the missing steps carefully if you use it.
- For 1.2 .15 , recall that you can find the center of the circle passing through given points A, B, and C by finding the intersection point of the perpendicular bisectors of the segments $A B$, $A C$, and $B C$. In this example the perpendicular bisectors of the given points are nice.
- For 1.2.30, use the formula for $|z-w|^{2}$ from problem 1.1.15 to get a formula for $\left|z^{2}\right|-\operatorname{Re}(A z)$ in terms of $|z-w|^{2}$ and $|w|^{2}$ for a suitable w.

